Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
QJM ; 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2281184

ABSTRACT

BACKGROUND: Genetic predisposition to COVID-19 may contribute to its morbidity and mortality. Because cytokines play an important role in multiple phases of infection, we examined whether commonly occurring, functional polymorphisms in macrophage migration inhibitory factor (MIF) are associated with COVID-19 infection or disease severity. AIM: To determine associations of common functional polymorphisms in MIF with symptomatic COVID-19 or its severity. METHODS: This retrospective case control study utilized 1171 patients with COVID-19 from three tertiary medical centers in the United States, Hungary, and Spain, together with a group of 637 pre-pandemic, healthy control subjects. Functional MIF promoter alleles (-794 CATT5-8, rs5844572), serum MIF and soluble MIF receptor levels, and available clinical characteristics were measured and correlated with COVID-19 diagnosis and hospitalization. Experimental mice genetically engineered to express human high- or low-expression MIF alleles were studied for response to coronavirus infection. RESULTS: In patients with COVID-19, there was a lower frequency of the high-expression MIF CATT7 allele when compared to healthy controls (11% vs. 19%, OR: 0.54 [0.41, 0.72], p < 0.0001). Among inpatients with COVID-19 (n = 805), there was a higher frequency of the MIF CATT7 allele compared to outpatients (n = 187) (12% vs. 5%, OR: 2.87 [1.42, 5.78], p = 0.002). Inpatients presented with higher serum MIF levels when compared to outpatients or uninfected healthy controls (87 ng/ml vs. 35 ng/ml vs. 29 ng/ml, p < 0.001, respectively). Among inpatients, circulating MIF concentrations correlated with admission ferritin (r = 0.19, p = 0.01) and maximum CRP (r = 0.16, p = 0.03) levels. Mice with a human high-expression MIF allele showed more severe disease than those with a low-expression MIF allele. CONCLUSIONS: In this multinational retrospective study of 1171 subjects with COVID-19, the commonly occurring -794 CATT7  MIF allele is associated with reduced susceptibility to symptomatic SARS-CoV-2 infection but increased disease progression as assessed by hospitalization. These findings affirm the importance of host genetics in different stages of COVID-19 infection.

2.
Sustainability ; 14(16):10037, 2022.
Article in English | MDPI | ID: covidwho-1987954

ABSTRACT

The outbreak of the COVID-19 pandemic has had a serious impact on the tourism of Seoul, which is deeply dependent on international tourists. It is now more crucial than ever to make preparation for tourism recovery. Hence, this study took the travel notes posted by Chinese tourists in Seoul as a data source and applied manual content analysis to encode urban tourism experience (UTE) elements from travel notes, scoring them one by one and, consequently, obtaining the Seoul UTE element structure table. On this basis, the paper used social network analysis (SNA) and modified 'importance–performance';analysis (MIPA), which complement each other, to thoroughly analyze the structural characteristics of elements and experience quality. The content analysis concludes that the Seoul UTE includes twenty-eight elements;SNA analysis shows that the network structure has high internal coordination and that UTE elements present aggregation with an indication of obvious differentiation of tourist sources;MIPA analysis reveals that overall experience quality is high, and an evaluation of traditional elements such as shopping and catering found them to be good;however, the evaluation of some core elements is low. With the help of our findings, it is hoped that this study can provide a better understanding and mastery of Chinese tourists' demands and experiences to further improve tourism competitiveness for the industry's recovery after post-COVID-19.

3.
J Cell Biol ; 221(6)2022 06 06.
Article in English | MEDLINE | ID: covidwho-1960887

ABSTRACT

ß-coronaviruses reshape host cell endomembranes to form double-membrane vesicles (DMVs) for genome replication and transcription. Ectopically expressed viral nonstructural proteins nsp3 and nsp4 interact to zipper and bend the ER for DMV biogenesis. Genome-wide screens revealed the autophagy proteins VMP1 and TMEM41B as important host factors for SARS-CoV-2 infection. Here, we demonstrated that DMV biogenesis, induced by virus infection or expression of nsp3/4, is impaired in the VMP1 KO or TMEM41B KO cells. In VMP1 KO cells, the nsp3/4 complex forms normally, but the zippered ER fails to close into DMVs. In TMEM41B KO cells, the nsp3-nsp4 interaction is reduced and DMV formation is suppressed. Thus, VMP1 and TMEM41B function at different steps during DMV formation. VMP1 was shown to regulate cross-membrane phosphatidylserine (PS) distribution. Inhibiting PS synthesis partially rescues the DMV defects in VMP1 KO cells, suggesting that PS participates in DMV formation. We provide molecular insights into the collaboration of host factors with viral proteins to remodel host organelles.


Subject(s)
COVID-19 , Membrane Proteins , SARS-CoV-2 , Viral Replication Compartments , Autophagy/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Organelles/metabolism , Phosphatidylserines , SARS-CoV-2/physiology , Viral Nonstructural Proteins/genetics , Virus Replication
4.
Cell Rep ; 40(5): 111160, 2022 08 02.
Article in English | MEDLINE | ID: covidwho-1936138

ABSTRACT

Although COVID-19 vaccines have been developed, multiple pathogenic coronavirus species exist, urging on development of multispecies coronavirus vaccines. Here we develop prototype lipid nanoparticle (LNP)-mRNA vaccine candidates against SARS-CoV-2 Delta, SARS-CoV, and MERS-CoV, and we test how multiplexing LNP-mRNAs can induce effective immune responses in animal models. Triplex and duplex LNP-mRNA vaccinations induce antigen-specific antibody responses against SARS-CoV-2, SARS-CoV, and MERS-CoV. Single-cell RNA sequencing profiles the global systemic immune repertoires and respective transcriptome signatures of vaccinated animals, revealing a systemic increase in activated B cells and differential gene expression across major adaptive immune cells. Sequential vaccination shows potent antibody responses against all three species, significantly stronger than simultaneous vaccination in mixture. These data demonstrate the feasibility, antibody responses, and single-cell immune profiles of multispecies coronavirus vaccination. The direct comparison between simultaneous and sequential vaccination offers insights into optimization of vaccination schedules to provide broad and potent antibody immunity against three major pathogenic coronavirus species.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Liposomes , Middle East Respiratory Syndrome Coronavirus/genetics , Nanoparticles , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
5.
Redox Biol ; 54: 102388, 2022 08.
Article in English | MEDLINE | ID: covidwho-1907715

ABSTRACT

The replication machinery of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is closely associated with the endoplasmic reticulum (ER) in host cells. Activation of the unfolded protein response (UPR) is a strategy hijacked by coronavirus to facilitate its replication and suppress host innate immunity. Here, we have found that SARS-CoV-2 ORF8 protein accumulates in the ER and escapes the degradation system by forming mixed disulfide complexes with ER oxidoreductases. ORF8 induces the activation of three UPR pathways through targeting key UPR components, remodels ER morphology and accelerates protein trafficking. Moreover, small molecule reducing agents release ORF8 from the mixed disulfide complexes and facilitate its degradation, therefore mitigate ER stress. Our study reveals a unique mechanism by which SARS-CoV-2 ORF8 escapes degradation by host cells and regulates ER reshaping. Targeting ORF8-involved mixed disulfide complexes could be a new strategy to alleviate SARS-CoV-2 induced ER stress and related diseases.


Subject(s)
Disulfides , Endoplasmic Reticulum , SARS-CoV-2 , Viral Proteins , COVID-19 , Disulfides/metabolism , Endoplasmic Reticulum/metabolism , Humans , Oxidoreductases/metabolism , Viral Proteins/metabolism
6.
Bioinformatics ; 38(14): 3549-3556, 2022 Jul 11.
Article in English | MEDLINE | ID: covidwho-1873852

ABSTRACT

SUMMARY: Mutation is the key for a variant of concern (VOC) to overcome selective pressures, but this process is still unclear. Understanding the association of the mutational process with VOCs is an unmet need. Motivation: Here, we developed VOC-alarm, a method to predict VOCs and their caused COVID surges, using mutations of about 5.7 million SARS-CoV-2 complete sequences. We found that VOCs rely on lineage-level entropy value of mutation numbers to compete with other variants, suggestive of the importance of population-level mutations in the virus evolution. Thus, we hypothesized that VOCs are a result of a mutational process across the globe. Results: Analyzing the mutations from January 2020 to December 2021, we simulated the mutational process by estimating the pace of evolution, and thus divided the time period, January 2020-March 2022, into eight stages. We predicted Alpha, Delta, Delta Plus (AY.4.2) and Omicron (B.1.1.529) by their mutational entropy values in the Stages I, III, V and VII with accelerated paces, respectively. In late November 2021, VOC-alarm alerted that Omicron strongly competed with Delta and Delta plus to become a highly transmissible variant. Using simulated data, VOC-alarm also predicted that Omicron could lead to another COVID surge from January 2022 to March 2022. AVAILABILITY AND IMPLEMENTATION: Our software implementation is available at https://github.com/guangxujin/VOC-alarm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Mutation , Software
7.
PLoS Genet ; 18(4): e1010113, 2022 04.
Article in English | MEDLINE | ID: covidwho-1817364

ABSTRACT

The study aims to determine the shared genetic architecture between COVID-19 severity with existing medical conditions using electronic health record (EHR) data. We conducted a Phenome-Wide Association Study (PheWAS) of genetic variants associated with critical illness (n = 35) or hospitalization (n = 42) due to severe COVID-19 using genome-wide association summary data from the Host Genetics Initiative. PheWAS analysis was performed using genotype-phenotype data from the Veterans Affairs Million Veteran Program (MVP). Phenotypes were defined by International Classification of Diseases (ICD) codes mapped to clinically relevant groups using published PheWAS methods. Among 658,582 Veterans, variants associated with severe COVID-19 were tested for association across 1,559 phenotypes. Variants at the ABO locus (rs495828, rs505922) associated with the largest number of phenotypes (nrs495828 = 53 and nrs505922 = 59); strongest association with venous embolism, odds ratio (ORrs495828 1.33 (p = 1.32 x 10-199), and thrombosis ORrs505922 1.33, p = 2.2 x10-265. Among 67 respiratory conditions tested, 11 had significant associations including MUC5B locus (rs35705950) with increased risk of idiopathic fibrosing alveolitis OR 2.83, p = 4.12 × 10-191; CRHR1 (rs61667602) associated with reduced risk of pulmonary fibrosis, OR 0.84, p = 2.26× 10-12. The TYK2 locus (rs11085727) associated with reduced risk for autoimmune conditions, e.g., psoriasis OR 0.88, p = 6.48 x10-23, lupus OR 0.84, p = 3.97 x 10-06. PheWAS stratified by ancestry demonstrated differences in genotype-phenotype associations. LMNA (rs581342) associated with neutropenia OR 1.29 p = 4.1 x 10-13 among Veterans of African and Hispanic ancestry but not European. Overall, we observed a shared genetic architecture between COVID-19 severity and conditions related to underlying risk factors for severe and poor COVID-19 outcomes. Differing associations between genotype-phenotype across ancestries may inform heterogenous outcomes observed with COVID-19. Divergent associations between risk for severe COVID-19 with autoimmune inflammatory conditions both respiratory and non-respiratory highlights the shared pathways and fine balance of immune host response and autoimmunity and caution required when considering treatment targets.


Subject(s)
COVID-19 , Veterans , COVID-19/epidemiology , COVID-19/genetics , Genetic Association Studies , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide/genetics
9.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
10.
Vaccines (Basel) ; 9(12)2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1614018

ABSTRACT

Since 2019, the COVID-19 pandemic has resulted in sickness, hospitalizations, and deaths of the old and young and impacted global social and economy activities. Vaccination is one of the most important and efficient ways to protect against the COVID-19 virus. In a review of the literature on parents' decisions to vaccinate their children, we found that widespread vaccination was hampered by vaccine hesitancy, especially for children who play an important role in the coronavirus transmission in both family and school. To analyze parent vaccination decision-making for children, our review of the literature on parent attitudes to vaccinating children, identified the objective and subjective influencing factors in their vaccination decision. We found that the median rate of parents vaccinating their children against COVID-19 was 59.3% (IQR 48.60~73.90%). The factors influencing parents' attitudes towards child vaccination were heterogeneous, reflecting country-specific factors, but also displaying some similar trends across countries, such as the education level of parents. The leading reason in the child vaccination decision was to protect children, family and others; and the fear of side effects and safety was the most important reason in not vaccinating children. Our study informs government and health officials about appropriate vaccination policies and measures to improve the vaccination rate of children and makes specific recommendations on enhancing child vaccinate rates.

11.
J Clin Immunol ; 41(4): 738-747, 2021 05.
Article in English | MEDLINE | ID: covidwho-1064554

ABSTRACT

We describe the cytokine profiles of a large cohort of hospitalized patients with moderate to critical COVID-19, focusing on IL-6, sIL2R, and IL-10 levels before and after receiving immune modulating therapies, namely, tocilizumab and glucocorticoids. We also discuss the possible roles of sIL2R and IL-10 as markers of ongoing immune dysregulation after IL-6 inhibition. We performed a retrospective chart review of adult patients admitted to a tertiary care center with moderate to critical SARS-CoV-2 infection. Disease severity was based on maximum oxygen requirement during hospital stay to maintain SpO2 > 93% (moderate, 0-3 L NC; severe, 4-6 L NC or non-rebreather; critical, HFNC, NIPPV, or MV). All patients were treated using the institution's treatment algorithm, which included consideration of tocilizumab for severe and critical disease. The most common cytokine elevations among all patients included IL-6, sIL2R, IFN-γ, and IL-10; patients who received tocilizumab had higher incidence of IL-6 and sIL2R elevations. Pre-tocilizumab IL-6 levels increased with disease severity (p = .0151). Both IL-6 and sIL2R levels significantly increased after administration of tocilizumab in all severity groups; IL-10 levels decreased in severe (p = .0203), but not moderate or critical, patients after they received tocilizumab. Cluster analysis revealed association between higher admission IL-6, sIL2R, and CRP levels and disease severity. Mean IL-6, sIL2R, and D-dimer were associated with mortality, and tocilizumab-treated patients with elevated IL-6, IL-10, and D-dimer were more likely to also receive glucocorticoids. Accessible clinical cytokine panels may be useful for monitoring response to treatment in COVID-19. The increase in sIL2R post-tocilizumab, despite administration of glucocorticoids, may indicate the need for combination therapy in order to modulate more than one hyperinflammatory pathway in COVID-19. We also discuss the role of cytokines as potential biomarkers for use of adjunct glucocorticoid therapy.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Cytokine Release Syndrome/diagnosis , Cytokines/blood , Immunologic Factors/therapeutic use , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Cytokines/immunology , Drug Therapy, Combination/methods , Feasibility Studies , Female , Glucocorticoids/therapeutic use , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Treatment Outcome , Young Adult
12.
Dev Cell ; 56(4): 427-442.e5, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-978254

ABSTRACT

Autophagy acts as a cellular surveillance mechanism to combat invading pathogens. Viruses have evolved various strategies to block autophagy and even subvert it for their replication and release. Here, we demonstrated that ORF3a of the COVID-19 virus SARS-CoV-2 inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes with lysosomes. The late endosome-localized ORF3a directly interacts with and sequestrates the homotypic fusion and protein sorting (HOPS) component VPS39, thereby preventing HOPS complex from interacting with the autophagosomal SNARE protein STX17. This blocks assembly of the STX17-SNAP29-VAMP8 SNARE complex, which mediates autophagosome/amphisome fusion with lysosomes. Expression of ORF3a also damages lysosomes and impairs their function. SARS-CoV-2 virus infection blocks autophagy, resulting in accumulation of autophagosomes/amphisomes, and causes late endosomal sequestration of VPS39. Surprisingly, ORF3a from the SARS virus SARS-CoV fails to interact with HOPS or block autophagy. Our study reveals a mechanism by which SARS-CoV-2 evades lysosomal destruction and provides insights for developing new strategies to treat COVID-19.


Subject(s)
Autophagosomes/metabolism , COVID-19/metabolism , Lysosomes/metabolism , SNARE Proteins/metabolism , Viroporin Proteins/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , COVID-19/virology , HEK293 Cells , HeLa Cells , Humans , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Vesicular Transport Proteins/metabolism , Viroporin Proteins/genetics
13.
Med (N Y) ; 2(2): 137-148.e4, 2021 02 12.
Article in English | MEDLINE | ID: covidwho-948684

ABSTRACT

BACKGROUND: Small studies have correlated hypertension with pneumonia risk; whether this is recapitulated in larger prospective studies, and represents a causal association, is unclear. METHODS: We estimated the risk for prevalent hypertension with incident respiratory diseases over mean follow-up of 8 years among 377,143 British participants in the UK Biobank. Mendelian randomization of blood pressure on pneumonia was implemented using 75 independent, genome-wide significant variants associated with systolic and diastolic blood pressures among 299,024 individuals not in the UK Biobank. Secondary analyses with pulmonary function tests were performed. FINDINGS: In total, 107,310 participants (30%) had hypertension at UK Biobank enrollment, and 9,969 (3%) developed pneumonia during follow-up. Prevalent hypertension was independently associated with increased risk for incident pneumonia (HR: 1.36; 95% CI: 1.29-1.43; p < 0.001), as well as other incident respiratory diseases. Genetic predisposition to a 5 mm Hg increase in blood pressure was associated with increased risk for incident pneumonia for systolic blood pressure (HR: 1.08; 95% CI: 1.04-1.13; p < 0.001) and diastolic blood pressure (HR: 1.11; 95% CI: 1.03-1.20; p = 0.005). Additionally, consistent with epidemiologic associations, increased blood pressure genetic risk was significantly associated with reduced performance on pulmonary function tests (p < 0.001). CONCLUSIONS: These results suggest that elevated blood pressure increases risk for pneumonia. Maintaining adequate blood pressure control, in addition to other measures, may reduce risk for pneumonia. FUNDING: S.M.Z. (1F30HL149180-01), M.H. (T32HL094301-07), and P.N. (R01HL1427, R01HL148565, and R01HL148050) are supported by the National Institutes of Health. J.P. is supported by the John S. LaDue Memorial Fellowship.


Subject(s)
Hypertension , Pneumonia , Biological Specimen Banks , Blood Pressure/genetics , Genome-Wide Association Study , Humans , Hypertension/epidemiology , Mendelian Randomization Analysis , Pneumonia/epidemiology , Polymorphism, Single Nucleotide , Prospective Studies , United Kingdom/epidemiology , United States
14.
Res Sq ; 2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-946477

ABSTRACT

Age is the dominant risk factor for infectious diseases, but the mechanisms linking the two are incompletely understood1,2. Age-related mosaic chromosomal alterations (mCAs) detected from blood-derived DNA genotyping, are structural somatic variants associated with aberrant leukocyte cell counts, hematological malignancy, and mortality3-11. Whether mCAs represent independent risk factors for infection is unknown. Here we use genome-wide genotyping of blood DNA to show that mCAs predispose to diverse infectious diseases. We analyzed mCAs from 767,891 individuals without hematological cancer at DNA acquisition across four countries. Expanded mCA (cell fraction >10%) prevalence approached 4% by 60 years of age and was associated with diverse incident infections, including sepsis, pneumonia, and coronavirus disease 2019 (COVID-19) hospitalization. A genome-wide association study of expanded mCAs identified 63 significant loci. Germline genetic alleles associated with expanded mCAs were enriched at transcriptional regulatory sites for immune cells. Our results link mCAs with impaired immunity and predisposition to infections. Furthermore, these findings may also have important implications for the ongoing COVID-19 pandemic, particularly in prioritizing individual preventive strategies and evaluating immunization responses.

15.
Cell Stem Cell ; 27(6): 876-889.e12, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-927293

ABSTRACT

SARS-CoV-2 infection has led to a global health crisis, and yet our understanding of the disease and potential treatment options remains limited. The infection occurs through binding of the virus with angiotensin converting enzyme 2 (ACE2) on the cell membrane. Here, we established a screening strategy to identify drugs that reduce ACE2 levels in human embryonic stem cell (hESC)-derived cardiac cells and lung organoids. Target analysis of hit compounds revealed androgen signaling as a key modulator of ACE2 levels. Treatment with antiandrogenic drugs reduced ACE2 expression and protected hESC-derived lung organoids against SARS-CoV-2 infection. Finally, clinical data on COVID-19 patients demonstrated that prostate diseases, which are linked to elevated androgen, are significant risk factors and that genetic variants that increase androgen levels are associated with higher disease severity. These findings offer insights on the mechanism of disproportionate disease susceptibility in men and identify antiandrogenic drugs as candidate therapeutics for COVID-19.


Subject(s)
Androgens/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Patient Acuity , Receptors, Coronavirus/metabolism , Signal Transduction , Adult , Androgen Antagonists , Androgens/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antiviral Agents/therapeutic use , COVID-19/complications , Cells, Cultured , Chlorocebus aethiops , Drug Evaluation, Preclinical , Female , Humans , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Organoids/drug effects , Organoids/virology , Risk Factors , Sex Factors , Vero Cells , COVID-19 Drug Treatment
17.
J Affect Disord ; 276: 446-452, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-666118

ABSTRACT

BACKGROUND: COVID-19 outbreak happened last December in China and is still continuing. Here, we reported effects of COVID-19 outbreak on the mood of general public and ascertained impacts of psychosocial factors on the plague-related emotional measures. METHODS: During Feb. 4-6, 2020, a self-reported questionnaire Beck Anxiety Inventory (BAI) was disseminated to general public via Wechat, along with a sociodemographic information sheet. BAI score and incidences of moderate and severe anxiety in subgroups of respondents were compared. Multiple linear and logistic regressions were done for correlation analysis and to identify factors predictive of anxiety. RESULTS: Averaged BAI score of all respondents is higher than those of general public in two previous studies. The people quarantined for probable COVID-19 infection presented higher BAI score and incidences of moderate and severe anxiety relative to non-quarantined respondents. People in high epidemic area showed higher BAI score and incidences of moderate and severe anxiety compared to those in low epidemic area. Significant associations existed between anxiety level of the respondents and each of the investigated factors, except for gender. Quarantine was the predictor with a highest OR, followed by divorced/widow. The other factors showed smaller but significant effects on the anxiety level of respondents. LIMITATIONS: This cross-sectional study was unable to track the emotional changes in the respondents over time. It had a relatively small sample and involved some of emotional measures only. CONCLUSION: These data are of help in planning psychological interventions for the different subpopulations in general public during and after COVID-19 outbreak.


Subject(s)
Anxiety/epidemiology , Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Adolescent , Adult , Anxiety/psychology , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Cross-Sectional Studies , Disease Outbreaks , Female , Humans , Logistic Models , Male , Middle Aged , Pneumonia, Viral/epidemiology , Quarantine , SARS-CoV-2 , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL